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Answer ALL Questions.

I ) a) 
Let T be a linear operator on an n-dimensional vector space V. Then prove that the characteristic and the minimal polynomials for T have the same roots, except for multiplicities.

                                                        [OR]

Let W be an invariant subspace for T. Then prove that the characteristic polynomial for the restriction operator 
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divides the characteristic polynomial for T. Also prove that the minimal polynomial for 
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divides the minimal polynomial for T.              
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    b)
State and prove Cayley-Hamilton theorem.

                                                         [OR]

Let V be a finite-dimensional vector space V over F and let T be a linear transform on V. Then prove that T is diagonalizable if and only if the minimal polynomial for T has the  form 
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  are  distinct  elements of  F. 
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II )a) 
Let V be a finite-dimensional vector space. Let  
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 be the subspaces of V and let  
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. Then prove the following are equivalent.


        i) 
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       ii) For each 
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 = {0}.                                                                                                        

                                                         [OR]

Let 
[image: image11.wmf]a

 be a non-zero vector in V and let 
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 be the T-annihilator of 
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.Then        prove that 

i) If the degree of
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 is k, then the vectors 
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 form a   basis for
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ii) If U is the linear operator on 
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 induced by T, then the minimal polynomial for U is
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.
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       b) 
State and prove the primary decomposition theorem.

                                                [OR]

Let T be a linear operator on a finite-dimensional vector space V over F. If T is diagonalizable and if 
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 are the distinct characteristic values of T, then prove that there exist linear operators 
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          (iii)
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          (iv) 
[image: image24.wmf]2

ii

EE

=



           (v) the range of 
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 is the characteristic  space for T associated with 
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Conversely, if there exist k distinct scalars 
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 and  k  non-zero linear operators 
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 which satisfy conditions (i),(ii) and (iii), then show that T is diagonalizable, 
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are the distinct characteristic values of T, and conditions (iv) and (v) are satisfied .
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III  a) Write a note on the Jordon form.

                                          [OR]

Let T be a linear operator on 
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 which is represented in the standard basis by the matrix
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. Find the minimal polynomial for T.
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      b) 
State and prove cyclic decomposition theorem.

                                             [OR]

           
State and prove generalized Cayley-Hamilton theorem.
             
   (15)

IV  a)
Prove that a form f  is Hermitian if and only if the corresponding linear operator T is self adjoint.

                                            [OR]

 If 
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 , then prove that 
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       b) i) State and prove Principal Axis Theorem.     

ii) Let V be a complex vector space and f a form on V such that f
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 is real for every 
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.Then prove that f is Hermitian.  

               
(9+6)

                                             [OR]

Let T be a diagonalizable normal operator  with spectrum S  on a finite-dimensional inner product  space V .Suppose f is a function whose domain contains S. Then prove that  f(T) is a  diagonalizable normal operator  with spectrum f(S) .If U is a unitary map of V onto V’ and   T’=UTU
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, prove that S is the spectrum of T’ and  f(T)= Uf(T)U
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V  a) 
Find all bilinear forms of  F
[image: image38.wmf]2

 over F.         

                                              [OR]


Let f be a non-degenerate bilinear form on a finite-dimensional vector space V.                            

Then prove that the set of all linear operators on V which preserve f is a group under the operation of composition. 
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b) Let V be a finite-dimensional vector space V over a field of characteristic zero, and let f  be a symmetric bilinear form on V. Then prove that there is an ordered basis for V in which f is represented by a diagonal matrix.

                                              [OR]

Let V be an n-dimensional vector space over a sub field of the complex numbers, and let f be a skew-symmetric bilinear form on V. Then prove that the rank r of f is even, and if r = 2k, then there is an ordered basis for V in which the matrix of f is the direct sum of the (n-r) x (n-r) zero matrix and k copies of the 2x2 matrix
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